Unit 3 Formula Sheet

Chapter 5

Standard Score or z-Score:

\(z=\frac{ \text {Value}- \text {Mean} }{ \text {Standard Deviation} }=\frac{x-\mu}\sigma\)

Transforming a z-Score to an x-Value:

\(x=\mu+z \cdot \sigma\)

Central Limit Theorem:

(\(n\geq30\) or population is normally distributed)

Mean of the Sampling Distribution: \(\mu_x=\mu\)

Standard Deviation of the Sampling Distribution (Standard Error):

\(\sigma_x=\frac\sigma{\sqrt n}\)

z-Score \(=\frac{{\displaystyle\overset\_x}-\mu_x}{\sigma_x}=\frac{\displaystyle\overset\_x-\mu}{ \frac {\sigma}{\sqrt n}}\)


Chapter 6

Confidence Interval for the Mean:

\(\overset-x-E<\mu<\overset-x+E\)

\(E=t_c\frac s{\sqrt n}\)

Minimum Sample Size to Estimate the Mean:

\(n=\left(\frac{z_c\sigma}E\right)^2\)

Population Proportion:

\(\widehat p=\frac xn\)

Confidence Interval for Population Proportion:

\(\widehat p-E\;<\;p\;<\;\widehat p+E\)

\(E=z_c\sqrt{\frac{\displaystyle\widehat p\widehat q}n}\)

Minimum Sample Size to Estimate:

\(n=\widehat p\widehat q\left(\frac{z_c}E\right)^2\)