Unit 1 Formula Sheet

Chapter 2


Standard Deviation:

Population

\(\sigma=\sqrt{\frac{\Sigma\left(x-\mu\right)^2}N}\)

Sample

\(s=\sqrt{\frac{\Sigma\left(x-\bar{x}\right)^2}{n-1}}\)

Frequency Distribution

\(s=\sqrt{\frac{\Sigma\left(x-\bar{x}\right)^2f}{n-1}}\)


z-Score:

Population

\(z=\frac{x-\mu}\sigma\)

Sample

\(z=\frac{x-\bar{x}}{s}\)

Empirical Rule:

(68-95-99.7 Rule) For symmetric, bell-shaped data sets

A normal curve with the x-axis labeled by integers from -3 to 3.  The mean is labeled in the center of the x-axis at 0.  The negative numbers to the left of the mean (-3 to -1) represent the standard deviations below the mean.  The positive numbers to the right of the mean (1 to 3) represent the standard deviations above the mean.  There are 8 shaded areas on the graph: four on each side of the mean.  The graph is symmetric so the 4 areas to the left and right of the mean are mirror images of each other.  From the left to the right of the graph the shaded areas represent the following percentages under the curve: 0.15%, 2.35%, 13.5%, 34%, 34%, 13.5%, 2.35%, and 0.15%

Range:

\(\text{Range}=\text{Maximum}-\text{Minimum}\)

Class Midpoint:

Class Midpoint = \(\frac{LCL+UCL}2\)

Class Width:

From raw data: \(\frac{ \text {Range} }{ \text {Number of Classes} }\) (round up)
From table: \( \text {Class Width} = LCL_2-LCL_1\)

Relative Frequency:

\( \text {Relative Frequency} = \frac{ \text {Class Frequency} }{ \text {Sample Size} } = \frac fn \)

Variance:

\( \text {variance} = \left( \text {standard deviation} \right)^2\)

Mean

Population

\(\mu=\frac{\Sigma x}N\)

Sample

\(\bar{x}=\frac{\Sigma x}n\)

Weighted

\(\bar{x}=\frac{\Sigma xw}{\Sigma w}\)

Frequency Distribution

\(\bar{x}=\frac{\Sigma xf}n\)

Interquartile Range and Outliers

Interquartile Range

\(IQR=Q_3-Q_1\)

Lower Outlier Critical Value:

\(Q_1-1.5(IQR)\)

Upper Outlier Critical Value:

\(Q_3+1.5(IQR)\)


Unit 2 Formula Sheet

Chapter 3

Classical (or Theoretical) Probability:

\(P(E)=\frac{ \text {Number of Outcomes in Event E} }{ \text {Total number of outcomes in the sample space }}\)

Empirical (or Statistical) Probability:

\(P(E)=\frac{ \text {Frequency of event E} }{ \text {Total frequency} }=\frac fn\)

Probability of a Complement:

\(P(E')=1-P(E)\)

Probability of occurrence of both events A and B:

\(P(A\; \text {and} \;B)=P(A)\cdot P(\left.B\right|A)\)

\(P(A\; \text {and} \;B)=P(A)\cdot P(B)\) if \(A\; \text {and} \;B\) are independent

Probability of occurrence of either A or B:

\(P(A \; \text {or} \; B)=P(A)\;+\;P(B)\;-\;P(A \; \text {and} \; B)\)

\(P(A\; \text {or} \;B)=P(A)\;+\;P(B)\) if A and B are mutually exclusive


Chapter 4

Mean of a Discrete Random Variable:

\(\mu=\Sigma x\;P(x)\)

Variance and Standard Deviation of a Discrete Random Variable:

Variance: \(\sigma^2=\Sigma\left(x-\mu\right)^2\;P(x)\)

Standard Deviation: \(\sigma=\sqrt{\sigma^2}=\sqrt{\Sigma\left(x-\mu\right)^2\;P(x)}\)

Expected Value:

\(E(x)=\mu=\Sigma x\;P(x)\)

Binomial Probability of x successes in n trials:

\(P(x)={}_nC_x\;p^xq^{n-x}=\frac{n!}{(n-x)!x!}p^xq^{n-x}\)

Population Parameters of a Binomial Distribution:

Mean: \(\mu=np\)
Variance: \(\sigma^2=npq\)
Standard Deviation: \(\sigma=\sqrt{npq}\)

Unit 3 Formula Sheet

Chapter 5

Standard Score or z-Score:

\(z=\frac{ \text {Value}- \text {Mean} }{ \text {Standard Deviation} }=\frac{x-\mu}\sigma\)

Transforming a z-Score to an x-Value:

\(x=\mu+z \cdot \sigma\)

Central Limit Theorem:

(\(n\geq30\) or population is normally distributed)

Mean of the Sampling Distribution: \(\mu_x=\mu\)

Standard Deviation of the Sampling Distribution (Standard Error):

\(\sigma_x=\frac\sigma{\sqrt n}\)

z-Score \(=\frac{{\displaystyle\overset\_x}-\mu_x}{\sigma_x}=\frac{\displaystyle\overset\_x-\mu}{ \frac {\sigma}{\sqrt n}}\)


Chapter 6

Confidence Interval for the Mean:

\(\overset-x-E<\mu<\overset-x+E\)

\(E=t_c\frac s{\sqrt n}\)

Minimum Sample Size to Estimate the Mean:

\(n=\left(\frac{z_c\sigma}E\right)^2\)

Population Proportion:

\(\widehat p=\frac xn\)

Confidence Interval for Population Proportion:

\(\widehat p-E\;<\;p\;<\;\widehat p+E\)

\(E=z_c\sqrt{\frac{\displaystyle\widehat p\widehat q}n}\)

Minimum Sample Size to Estimate:

\(n=\widehat p\widehat q\left(\frac{z_c}E\right)^2\)


Unit 4 Formula Sheet

Chapter 7

Test Statistics:

Mean: \(t=\frac{{\displaystyle\overset\_x}-\mu}{ \frac {s}{\sqrt n}}\)

Proportion: \(z=\frac{{\displaystyle\widehat p}-\mu_{\displaystyle\widehat p}}{\sigma_{\displaystyle\widehat p}}=\frac{\widehat p-p}{\sqrt{ \frac {pq}{n}}}\)

Null Hypothesis is the Claim Alternate Hypothesis is the Claim
Reject the Null “There is sufficient sample evidence to reject the claim that…” “There is sufficient sample evidence to support the claim that…”
Fail to Reject the Null “There is not sufficient sample evidence to reject the claim that…” “There is not sufficient sample evidence to support the claim that…”

Chapter 9

Correlation Coefficient:

\(r=\frac{n\sum xy-\left(\sum x\right)\left(\sum y\right)}{\sqrt{n\sum x^2-\left(\sum x\right)^2}\sqrt{n\sum y^2-\left(\sum y\right)^2}}\)

t-Test for Linear Correlation:

\(t=\frac r{\sqrt{\displaystyle\frac{1-r^2}{n-2}}}\) (\(\text {degrees of freedom} = n-2\))

Equation of a Regression Line:

\(\widehat y=mx+b\)

Chapter 10:

Chi-Square

\(\chi^2={\textstyle\sum }\frac{\left(O-E\right)^2}E\)

Goodness of Fit Test:

degrees of freedom = \(k-1\)

Independence Test:

degrees of freedom = \((r-1)(c-1)\)

r=number of rows

c=number of columns

Table of Critical Values Pearson Correlation

2-tailed: Degrees of Freedom \(= n-2\)

n Degrees of Freedom alpha=0.1 alpha=0.05 alpha=0.01
3 df=1 0.988 0.997 0.999
4 df=2 0.900 0.950 0.990
5 df=3 0.805 0.878 0.959
6 df=4 0.729 0.811 0.917
7 df=5 0.669 0.754 0.875
8 df=6 0.621 0.707 0.834
9 df=7 0.584 0.666 0.798
10 df=8 0.549 0.632 0.765
11 df=9 0.521 0.602 0.735
12 df=10 0.497 0.576 0.708
13 df=11 0.476 0.553 0.684
14 df=12 0.458 0.532 0.661
15 df=13 0.441 0.514 0.641
16 df=14 0.426 0.497 0.623
17 df=15 0.412 0.482 0.606
18 df=16 0.400 0.468 0.590
19 df=17 0.389 0.456 0.575
20 df=18 0.378 0.444 0.561
21 df=19 0.369 0.433 0.549
22 df=20 0.360 0.423 0.537
23 df=21 0.352 0.413 0.526
24 df=22 0.344 0.404 0.515
25 df=23 0.337 0.396 0.505
26 df=24 0.330 0.388 0.496
27 df=25 0.323 0.381 0.487
28 df=26 0.317 0.374 0.479
29 df=27 0.311 0.367 0.471
30 df=28 0.306 0.361 0.463
31 df=29 0.301 0.355 0.456
32 df=30 0.296 0.349 0.449
37 df=35 0.275 0.325 0.418
42 df=40 0.257 0.304 0.393
47 df=45 0.243 0.288 0.372
52 df=50 0.231 0.273 0.354
62 df=60 0.211 0.250 0.325
72 df=70 0.195 0.232 0.303
82 df=80 0.183 0.217 0.283
92 df=90 0.173 0.205 0.267
102 df=100 0.164 0.195 0.254
152 df=150 0.134 0.159 0.208
302 df=300 0.095 0.113 0.148