4.3 Indefinite Integrals
General Integral Formulas
$\begin{align}&\int u^n\;du\end{align}\;=\;\frac{u^{n+1}}{n+1}+C\;\;n\neq-1$
$\begin{align}&\int e^u\;du\end{align}\;=\;e^u+C$
$\begin{align}&\int\frac1u\;du\end{align}\;=\;\ln\left|u\right|+C$
$\begin{align}&\int E'\left[I(x)\right]I'(x)\;dx\end{align}=E\left[I(x)\right]+C$
$\begin{align}&\int\left[f(x)\right]^nf'(x)\;dx\end{align}=\frac{\left[f(x)\right]^{n+1}}{n+1}+C\;\;\;n\neq-1$
$\begin{align}&\int e^{f(x)}\cdot f'(x)\;dx\end{align}=e^{f(x)}+C$
$\begin{align}&\int{\frac{1}{f\left( x \right)}~{f}'\left( x \right)~dx~}\end{align}=~\ln \left[ f\left( x \right) \right]+C$
4.3 Video
Find the indefinite integral. Check by differentiating.
-
$\begin{align}&\int {15{x^2}\;\;dx}\end{align} $
$=\frac{{15{x^3}}}{3} + C$
$=5{x^3} + C$
-
$\begin{align}&\int {10\;dx}\end{align}$
$=10x + C$
-
$\begin{align}&\int {8\;{x^{1/3}}\;\;\;dx}\end{align}$
$= \frac{{8{x^{4/3}}}}{({4/3})} + C$
$= \frac{3}{4}(8{x^{4/3}}) + C$
$= 6{x^{4/3}} + C$
-
$\begin{align}&\int {\left( {4{x^3} + \frac{2}{{{x^3}}}} \right)\;dx}\end{align}$
$\begin{align}&\int {4{x^3} + 2{x^{ - 3}}dx}\end{align}$
$= \frac{{4{x^4}}}{4} + \frac{{2{x^{ - 2}}}}{{ - 2}} + C$
$= {x^4} - {x^{ - 2}} + C$
$= {x^4} - \frac{1}{{{x^2}}} + C$
-
$\begin{align}&\int {{x^{ - 4}}\;\;dx}\end{align} $
$=\frac{{{x^{ - 3}}}}{{ - 3}} + C$
$=-\frac{{ {x^{ - 3}}}}{3} + C$
$=-\frac{1}{3x^{3}}+C$
-
$\begin{align}&\int {{x^2}\;\left( {1 + {x^3}} \right)\;dx}\end{align}$
$\begin{align}&\int {\left({x^2} + {x^5}\right)dx}\end{align}$
$= \frac{{{x^3}}}{3} + \frac{{{x^6}}}{6} + C$
-
$\begin{align}&\int {\frac{{1 - x{e^x}}}{x}dx}\end{align}$
$\begin{align}&\int {\left(\frac{1}{x} - {e^x}\right)dx}\end{align}$
$= \ln \left| x \right| - {e^x} + C$
Find the particular antiderivative of each derivative that satisfies the given condition.
-
$R'\left( x \right) = 600 - 0.6x \quad$ when $R\left( 100 \right) = 70,000$
$R(x)=\begin{align}&\int {(600 - 0.6x)} dx\end{align}$
$R(x) = 600x - \frac{{0.6{x^2}}}{2} + C$
$R(x) = 600x - 0.3{x^2} + C$
Use $R(100) = 70,000$ to solve for C.
$600(100) - 0.3({100^2}) + C = 70,000$
$60,000 - 3000 + C = 70,000$
$C = 13,000$
$R(x) = 600x - 0.3{x^2}+13,000$
-
$\frac{{dQ}}{{dt}}\; = \;\;\frac{{100}}{{{t^2}}} \quad$ when $Q\left( 1 \right) = 400$
$\frac{{dQ}}{{dt}}=100{t^{ - 2}}$
$Q(t)=\begin{align}&\int {100{t^{ - 2}}} dt\end{align}$
$Q(t) = \frac{{100{t^{ - 1}}}}{{ - 1}} + C$
$Q(t) = \frac{{ - 100}}{t} + C$
Use $Q(1) = 400$ to solve for C.
$\frac{{ - 100}}{1} + C = 400$
$ - 100 + C = 400$
$C = 500$
$Q(t) = \frac{{ - 100}}{t} + 500$
-
$\frac{{dy}}{{dt}} = 5{e^t} - 4 \quad$ when $y(0)=- 1$
$y=\begin{align}&\int {\left(5{e^t} - 4\right)dt}\end{align}$
$y = 5{e^t} - 4t + C$
Use $y(0) = -1$ to solve for C.
$5{e^0} - 4(0) + C = - 1$
$5(1) - 0 + C = - 1$
$5 - 0 + C = - 1$
$5 + C = - 1$
$C = - 6$
$y = 5{e^t} - 4t - 6$
-
Renewable Energy: According to the Energy Research Institute, in 2012, US consumption of renewable energy was $8.45$ quadrillion Btu (or $8.45 \times 10^{15}$ Btu). Since the 1960’s, consumption has been growing at a rate (in quadrillion Btu per year) given by $$f'(t) = 0.004t + 0.062$$ where t is in years after 1960. Find $f(t)$ and estimate US consumption of renewable energy in 2024.
$f(t) = \begin{align}&\int {f'(t)dt}\end{align}$
$f(t) = \begin{align}&\int {\left(0.004t+0.062\right)dt}\end{align}$
$f(t) = \frac{{0.004{t^2}}}{2} + 0.062t + C$
$f(t) = 0.002{t^2} + 0.062t + C$
In 2012 (t=52), consumption was 8.45 quadrillion Btu. Use this information to solve for C.
$0.002{\left( {52} \right)^2} + 0.062(52) + C = 8.45$
$5.408 + 3.224 + C = 8.45$
$8.632 + C = 8.45$
$C = - 0.182$
$f(t) = 0.002{t^2} + 0.062t - 0.182$
Use the completed function $f(t)$ to estimate US consumption of renewable energy in 2024 (t=64).
$f(64) = 0.002{\left( {64} \right)^2} + 0.062(64) - 0.182$
$f(64) = 8.192 + 3.968 - 0.182$
$f(64) = 11.978$
The estimated US consumption of renewable energy in 2024 will be 11.978 quadrillion BTU.
-
Sales Analysis: The rate of change of the monthly sales of a newly released video game is given by $$S'(t) = 400{t^{1/3}}$$ $$S(0) = 0$$ where t is the number of months since the game was released and $S(t)$ is the number of games sold each month (in thousands). Find $S(t)$. When will monthly sales reach 20,000,000 games?
$S(t)=\begin{align}&\int400t^{1/3}\;dt\end{align}$
$S(t) = \frac{{400{t^{4/3}}}}{{4/3}} + C$
$S(t) = \frac{3}{4}(400t^{4/3}) + C$
$S(t) = 300{t^{4/3}} + C$
Use $S(0) = 0$ to solve for C.
$300{\left( 0 \right)^{4/3}} + C = 0$
$C = 0$
$S(t) = 300{t^{4/3}}$
Use the completed function $S(t)$ to estimate the month when monthly sales will reach 20,000,000 games.
$300{t^{4/3}} = 20000$
${t^{4/3}} = \frac{{200}}{3}$
${\left( {{t^{4/3}}} \right)^{3/4}}= {\left( {\frac{{200}}{3}} \right)^{3/4}}$
$t = 23.33$
The monthly sales will reach 20,000,000 games after 23.33 months.
-
Efficiency of a Machine Operator: The rate at which a machine operator’s efficiency Q (in percent) changes with respect to time on the floor without a break is modeled by the function $$\frac{{dQ}}{{dt}} = 0.3t - 7\quad \quad 0 \le t \le 16\,\,hrs$$ where t is the number of house the operator has been working. Find $Q(t)$ given that the operator’s efficiency after working 2 hours is 82%.
$Q(t)=\begin{align}&\int {\left(0.3t - 7 \right)dt}\end{align}$
$Q(t) = \frac{{0.3{t^2}}}{2} - 7t + C$
$Q(t) = 0.15{t^2} - 7t + C$
Use (2, 82) to solve for C.
$Q(2) = 0.15{\left( 2 \right)^2} - 7(2) + C = 82$
$- 13.4 + C = 82$
$C = 95.4$
$Q(t) = 0.15{t^2} - 7t + 95.4$
Find the operators efficiency after 4 hours. After 8 hours.
$Q(4) = 0.15{\left( 4 \right)^2} - 7(4) + 95.4 = 69.8\%$
$Q(8) = 0.15{\left( 8 \right)^2} - 7(8) + 95.4 = 49\%$
The operator efficiency after 4 hours on the floor without a break is 69.8%.
The operator efficiency after 8 hours on the floor without a break is 49%.
-
$\begin{align}&\int {(2{x^4} - 5{x^3} - {x^2} + 5x - 8)\;dx}\end{align}$
$ = \frac{{2{x^5}}}{5} - \frac{{5{x^4}}}{4} - \frac{{{x^3}}}{3} + \frac{{5{x^2}}}{2} - 8x + C$
-
$\begin{align}&\int {\,(3{x^{ - 2}} - 4{x^{ - 3}} + 8)\;dx}\end{align}$
$= \frac{{3{x^{ - 1}}}}{{ - 1}} - \frac{{4{x^{ - 2}}}}{{ - 2}} + 8x + C$
$= - 3{x^{ - 1}} + 2{x^{ - 2}} + 8x + C$
-
$\begin{align}&\int {(4{x^{ - 1}} + 3x - 2{e^x} - 1)\;dx}\end{align}$
$ = 4\ln \left| x \right| + \frac{{3{x^2}}}{2} - 2{e^x} - x + C$
-
$\begin{align}&\int {\left( {2\sqrt[3]{{{x^2}}} - 4\sqrt x + \frac{3}{{{x^2}}} - \frac{5}{x} + 2} \right)} \;dx\end{align}$
$=\begin{align}&\int\left(2x^{2/3}-4x^{1/2}+3x^{-2}-\frac5x+2\right)\;dx \end{align}$
$ = \frac{{2{x^{5/3}}}}{{5/3}} - \frac{{4{x^{3/2}}}}{{3/2}} + \frac{{3{x^{ - 1}}}}{{ - 1}} - 5\ln \left| x \right| + 2x + C$
$= \frac{6}{5}{x^{5/3}} - \frac{8}{3}{x^{3/2}} - 3{x^{ - 1}} - 5\ln \left| x \right| + 2x + C$
-
$\begin{align}&\int {\left( {{e^x} + \frac{2}{x} - \frac{3}{{{x^2}}} - \frac{4}{{\sqrt x }} + 5} \right)\;dx}\end{align}$
$=\begin{align}&\int\left(e^x+\frac2x-3x^{-2}-4x^{-1/2}+5\right)\;dx\end{align}$
$ = {e^x} + 2\ln \left| x \right| - \frac{{3{x^{ - 1}}}}{{ - 1}} - \frac{{4{x^{1/2}}}}{{1/2}} + 5x + C$
$= {e^x} + 2\ln \left| x \right| + \frac{3}{x} - 8\sqrt x + 5x + C$
-
$\begin{align}&\int {\frac{{2{x^2} + 6x - 7}}{x}} \;dx\end{align}$
$\begin{align}&\int {(2x + 6 - \frac{7}{x}} )dx\end{align}$
$= \frac{{2{x^2}}}{2} + 6x - 7\ln \left| x \right| + C$
$= {x^2} + 6x - 7\ln \left| x \right| + C$
-
$\begin{align}&\int {\,\frac{{4{x^4} - 5{x^3} + 6{x^2} - 7x}}{{{x^2}}}} \;dx\end{align}$
$\begin{align}&\int {(4{x^2} - 5x + 6 - \frac{7}{x}} )dx\end{align}$
$= \frac{{4{x^3}}}{3} - \frac{{5{x^2}}}{2} + 6x - 7\ln \left| x \right| + C$
-
The MORF dress in one dress with no buttons, zippers, Velcro, front or back that can be worn 24 different ways. After completing a successful Kickstarter campaign, the company found that the marginal cost for making the dress can be modeled by the function $C'(x) = {x^2} - 16x + 70$ dollars per dress where x is the number of dresses produced.
- Find the cost function for the MORF dress.
$C(x) = \frac{{{x^3}}}{3} - \frac{{16{x^2}}}{2} + 70x + C$
$C(x) = \frac{{{x^3}}}{3} - 8{x^2} + 70x + C$
- If $C(0) = 500$ find the total cost for producing 20 dresses.
$\frac{0}{3} - 8(0) + 70(0) + C = 500$
$0 + C = 500$
$C = 500$
$C(x) = \frac{{{x^3}}}{3} - 8{x^2} + 70x + 500$
$C(20) = \frac{{8000}}{3} - 3200 + 1400 + 500$
$C(20) = \$ 1366.67$
- What is the fixed cost and what is the total variable cost of 20 dresses?
fixed cost $= \$ 500$ to produce 20 dresses
variable cost $= \$ 866.67$ to produce 20 dresses
- Find the cost function for the MORF dress.
-
Suppose that when it is t years old, a particular industrial machine generates revenue at the rate $R'(t) = 5000 - 20{t^2}$ dollars per year.
The operating and servicing costs related to the machine accumulate at the rate of $C'(t) = 2000 + 10{t^2}$ dollars per year.
Find the profit function given that when the machine is first purchased no profit has been generated from it.
$R'(t) = 5000 - 20{t^2}$
$C'(t) = 2000 + 10{t^2}$
$P'(t) = R'(t) - C'(t)$
$P'(t) = (5000 - 20{t^2}) - (2000 + 10{t^2})$
$= 5000 - 20{t^2} - 2000 - 10{t^2}$
$= 3000 - 30{t^2}$
$P(t) = \begin{align}&\int {(3000 - 30{t^2})dt}\end{align}$
$P(t) = 3000t - \frac{{30{t^3}}}{3} + C$
$P(t) = 3000t - 10{t^3} + C$
$3000(0) - 10{\left( 0 \right)^3} + C = 0$
$0 + C = 0$
$C = 0$
$P(t) = 3000t - 10{t^3}$
-
The rate of change for the lower limit for the top 5% of earners for all households in the United States from 2000 to 2014 can be modeled by $$I'(t) = 38.58{t^2} - 523.56t + 5416.05$$ where $t$ is the number of years after 2000.
- Find a general antiderivative for the lower limit for the top 5% of earners.
$I'(t) = 38.58{t^2} - 523.56t + 5416.05$
$I(t)=\begin{align}&\int {(38.85{t^2} - 523.56t + 5416.05)dt}\end{align}$
$I(t)=\frac{{38.58{t^3}}}{3} - \frac{{523.56{t^2}}}{2} + 5416.05t + C$
$I(t) = 12.86{t^3} - 261.78{t^2} + 5416.05t + C$
- Find a specific antiderivative given that in 2000 the lower limit for the top 5% of earners was $145,220.
$I(0) = 12.86(0)^3 - 261.78(0)^2 + 5416.05(0) + C=145,220$
$I(0) = 0 - 0 + 0 + C= 145,220$
$C = 145,220$
$I(t) = 12.86{t^3} - 261.78{t^2} + 5416.05t + 145,220$
- What will the lower limit for the top 5% of earners be in 2015 using this model?
$I(15) = 12.86{(15)^3} - 261.78{(15)^2} + 5416.05(15) + 145,220$
$I(15) = \$ 210,963$
The lower limit on income for the top 5% of earners in 2015 will be \$210,963.
- Find a general antiderivative for the lower limit for the top 5% of earners.
4.3 Lecture
4.3 Group Work
4.3 Additional Practice
Integrate the following.