MATH 1830

Unit 3 Derivative Rules

3.4 Derivatives of Quotients

Derivatives of Quotients

The Quotient Rule

If $y = \;\frac{f(x)}{g(x)},$

then $y' = \;\frac{{f'(x)\;g(x)\; - \;f(x)\;g'(x)\;}}{{[{g(x)}}]^2}.$



3.4 Video

Two Methods for Finding the Derivative:

Find the derivative two different ways.



  1. $r\left( x \right) = \;\frac{{{x^5}+4}}{{{x^2}}}$

    1. Simplifying and Using Power Rule

      $r(x) = \frac{{{x^5}}}{{{x^2}}} + \frac{4}{{{x^2}}}$

      $r(x) = {x^3} + 4{x^{ - 2}}$

      ${r'}(x) = 3{x^2} - 8{x^{ - 3}}$

      ${r'}(x) = 3{x^2} - \frac{8}{{{x^3}}}$

    2. Using Quotient Rule

      $f = {x^5} + 4$

      $f' = 5{x^4}$

      $g = {x^2}$

      $g' = 2x$

      $r'(x) = \frac{{5{x^4}({x^2}) - 2x({x^5} + 4)}}{{({x^2})^2}}$

      $r'(x) = \frac{{5{x^6} - 2{x^6} - 8x}}{{{x^4}}}$

      $r'(x) = \frac{{3{x^6} - 8x}}{{{x^4}}}$

      $r'(x) = \frac{{x(3{x^5} - 8)}}{{{x^4}}}$

      $r'(x) = \frac{{3{x^5} - 8}}{{{x^3}}}$

      $r'(x) = 3{x^2} - \frac{8}{{{x^3}}}$ (which is the same answer as part a)

  2.  

    3.4 Lecture

    Find the Derivative of each Function using the Quotient Rule.

  3. $b\left( x \right) = \;\frac{{4x}}{{3x + 8}}$

    $f =4x$

    $f' =4$

    $g =3x+8$

    $g' = 3$

    $b'(x) = \frac{{4(3x + 8) - 3(4x)}}{{{{\left( {3x + 8} \right)}^2}}}$

    $b'(x) = \frac{{12x + 32 - 12x}}{{{{\left( {3x + 8} \right)}^2}}}$

    $b'(x) = \frac{{32}}{{{{\left( {3x + 8} \right)}^2}}}$

  4. $c\left( x \right) = \;\frac{{{x^2}\; - 9}}{{{x^2}\; + 1}}$

    $f ={x^2} - 9$

    $f' =2x$

    $g ={x^2} + 1$

    $g' = 2x$

    $c'(x) = \frac{{2x({x^2} + 1) - 2x({x^2} - 9)}}{{{{\left( {{x^2} + 1} \right)}^2}}}$

    $c'(x) = \frac{{2{x^3} + 2x - 2{x^3} + 18x}}{{{{\left( {{x^2} + 1} \right)}^2}}}$

    $c'(x) = \frac{{20x}}{{{{\left( {{x^2} + 1} \right)}^2}}}$

  5. $h\left( x \right) = \;\frac{{1 + {e^x}}}{{1 - {e^x}}}$

    $f =1 + {e^x}$

    $f' = {e^x}$

    $g = 1 - {e^x}$

    $g' = - {e^x}$

    $h'(x) = \frac{{{e^x}(1 - {e^x}) - \left( { - {e^x}} \right)(1 + {e^x})}}{{{{\left( {1 - {e^x}} \right)}^2}}}$

    $h'(x) = \frac{{{e^x}(1 - {e^x}) + {e^x}(1 + {e^x})}}{{{{\left( {1 - {e^x}} \right)}^2}}}$

    $h'(x) = \frac{{{e^x} - {e^{2x}} + {e^x} + {e^{2x}}}}{{{{\left( {1 - {e^x}} \right)}^2}}}$

    $h'(x) = \frac{{2{e^x}}}{{{{\left( {1 - {e^x}} \right)}^2}}}$

  6.  

    3.4 Group Work

  7. $j\left( x \right) = \;\frac{{3x}}{{4 + \ln x}}$

    $f =3x$

    $f' = 3$

    $g =4 + \ln x$

    $g' = \frac{1}{x}$

    $j'(x) = \frac{{3(4 + \ln x) - \frac{1}{x}(3x)}}{{{{\left( {4 + \ln x} \right)}^2}}}$

    $j'(x) = \frac{{12 + 3\ln x - 3}}{{{{\left( {4 + \ln x} \right)}^2}}}$

    $j'(x) = \frac{{9 + 3\ln x}}{{{{\left( {4 + \ln x} \right)}^2}}}$

  8. Find $\frac{{dy}}{{dw}}$ for $y = \;\frac{{2{w^4}\; - \;{w^3}}}{{6w - 1}}$

    $f =2{w^4} - {w^3}$

    $f' = 8{w^3} - 3{w^2}$

    $g = 6w - 1$

    $g' = 6$

    $\frac{{dy}}{{dw}} = \frac{{(8{w^3} - 3{w^2})(6w - 1) - 6(2{w^4} - {w^3})}}{{{{\left( {6w - 1} \right)}^2}}}$

    $\frac{{dy}}{{dw}} = \frac{{48{w^4} - 8{w^3} - 18{w^3} + 3{w^2} - 12{w^4} + 6{w^3}}}{{{{\left( {6w - 1} \right)}^2}}}$

    $\frac{{dy}}{{dw}} = \frac{{36{w^4} - 20{w^3} + 3{w^2}}}{{{{\left( {6w - 1} \right)}^2}}}$

  9. $h\left( x \right) = \;\frac{{3x - 7}}{{2x - 1}}$

    1. Find $h'\left( x \right).$

      $f =3x - 7$

      $f' = 3$

      $g = 2x - 1$

      $g' = 2$

      $h'(x) = \frac{{3(2x - 1) - 2(3x - 7)}}{{{{\left( {2x - 1} \right)}^2}}}$

      $h'(x) = \frac{{6x - 3 - 6x + 14}}{{{{\left( {2x - 1} \right)}^2}}}$

      $h'(x) = \frac{{11}}{{{{\left( {2x - 1} \right)}^2}}}$

    2. Find the equation of the line tangent to the graph of $h$ at $x\; = \;2$.

      Point $\quad h(2) = \frac{{3\cdot2 - 7}}{{2\cdot2 - 1}} = \frac{{ - 1}}{3}$

      $(2, - \frac{1}{3})$

      Slope $\quad {m_{tan}} = f'(2) = \frac{{11}}{{{{\left( {2\cdot2 - 1} \right)}^2}}} = \frac{{11}}{{{3^2}}} = \frac{{11}}{9}$

      ${m_{tan}} = \frac{{11}}{9}$

      Equation of Line: $y + \frac{1}{3} = \frac{{11}}{9}(x - 2)$

      $y + \frac{1}{3} = \frac{{11}}{9}x - \frac{{22}}{9}$

      $y = \frac{{11}}{9}x - \frac{{25}}{9}$

    3. Find the values of x where h’(x) = 0.

      $\frac{{11}}{{{{(2x - 1)}^2}}} = 0$

      $\frac{{11}}{{{{(2x - 1)}^2}}} = \frac{0}{1}$

      Cross Multiply

      $0 \ne 11$ There is no value of x where $h'(x) =0.$

    Derivatives with Radicals

  10. Find y’ for $y = \;\frac{{6\sqrt[3]{x}}}{{2{x^2}\; - 5x + 1}}.$

    $f(x)=\frac{{6{x^{1/3}}}}{{2{x^2} - 5x + 1}}$

    $f =6{x^{1/3}}$

    $f' = \frac{1}{3}\cdot 6{x^{ - 2/3}}$

    $f' = 2{x^{ - 2/3}}$

    $g = 2{x^2} - 5x + 1$


    $g' = 4x - 5$


    $y' = \frac{{2{x^{ - 2/3}}(2{x^2} - 5x + 1) - (4x - 5)(6{x^{1/3}})}}{{{{\left( {2{x^2} - 5x + 1} \right)}^2}}}$

    $y' = \frac{{4{x^{4/3}} - 10{x^{1/3}} + 2{x^{ - 2/3}} - 24{x^{4/3}} + 30{x^{1/3}}}}{{{{\left( {2{x^2} - 5x + 1} \right)}^2}}}$

    $y' = \frac{{ - 20{x^{4/3}} + 20{x^{1/3}} + 2{x^{ - 2/3}}}}{{{{\left( {2{x^2} - 5x + 1} \right)}^2}}}$

    Multiply every term by ${{x}^{2/3}}.$

    $y' = \frac{{ - 20{x^2} + 20x + 2}}{{\sqrt[3]{{{x^2}}}{{(2{x^2} - 5x + 1)}^2}}}$

  11. Find $\frac{{dy}}{{dx}}$ for $y = \;\frac{{\;2{x^2}\; - 2x + 3\;}}{{\sqrt[4]{x}}}.$

    $f =2{x^2} - 2x + 3$

    $f' = 4x - 2$

    $g = {x^{1/4}}$

    $g' = \frac{1}{4}{x^{ - 3/4}}$

    $\frac{{dy}}{{dx}} = \frac{{(4x - 2)({x^{1/4}}) - \frac{1}{4}{x^{ - 3/4}}(2{x^2} - 2x + 3)}}{{{{\left( {{x^{1/4}}} \right)}^2}}}$

    $\frac{{dy}}{{dx}} = \frac{{4{x^{5/4}} - 2{x^{1/4}} - \frac{1}{2}{x^{5/4}} + \frac{1}{2}{x^{1/4}} - \frac{3}{4}{x^{ - 3/4}}}}{{{x^{1/2}}}}$

    $\frac{{dy}}{{dx}} = \frac{{\left( {\frac{7}{2}{x^{5/4}} - \frac{3}{2}{x^{1/4}} - \frac{3}{4}{x^{ - 3/4}}} \right)}}{{({x^{1/2}})}}$

    $\frac{{dy}}{{dx}} = \frac{{\left( {\frac{7}{2}{x^{5/4}} - \frac{3}{2}{x^{1/4}} - \frac{3}{4}{x^{ - 3/4}}} \right)\cdot 4}}{{({x^{1/2}})\cdot 4}}$

    $\frac{{dy}}{{dx}} = \frac{{14{x^{5/4}} - 6{x^{1/4}} - 3{x^{ - 3/4}}}}{{(4{x^{1/2}})}}$

    $\frac{dy}{dx}=\frac{14{{x}^{5/4}}-6{{x}^{1/4}}-\frac{3}{{{x}^{{}^{3}/{}_{4}}}}}{4{{x}^{1/2}}}$

    Multiply every term by ${{x}^{3/4}}.$

    $\frac{dy}{dx}=\frac{14{{x}^{8/4}}-6{{x}^{4/4}}-3}{(4{{x}^{1/2}}){{x}^{3/4}}}$

    $\frac{dy}{dx}=\frac{14{{x}^{2}}-6x-3}{4{{x}^{5/4}}}$

    Applications

  12. A cable company has installed a new television system in a city. The total number N (in thousands) of subscribers t months after the installation of the system is given by $N\left( t \right) = \;\frac{{178t}}{{t + 5}}.$

    1. Find $N'(t).$

      $f =178t$

      $f' = 178$

      $g = t + 5$

      $g' = 1$

      $N'(t) = \frac{{178(t + 5) - 1(178t)}}{{{{\left( {t + 5} \right)}^2}}}$

      $N'(t) = \frac{{178t + 890 - 178t}}{{{{\left( {t + 5} \right)}^2}}}$

      $N'(t) = \frac{{890}}{{{{\left( {t + 5} \right)}^2}}}$

    2. Find $N\left( {12} \right)$ and $N'\left( {12} \right)$. Write a brief interpretation of these results.

      $N(12) = \frac{{178(12)}}{{12 + 5}} = \frac{{2136}}{{17}} = 125.647$

      $N'(12) = \frac{{890}}{{{{\left( {12 + 5} \right)}^2}}} = \frac{{890}}{{{{17}^2}}} = \frac{{890}}{{289}} = 3.0796$

      At 12 months the cable company has 125,647 subscribers and that number is increasing at a rate of 3080 subscribers per month.

    3. Use the results above to estimate the total number of subscribers after 13 months.

      $N(13)\approx N(12)+N'(12)$

      125,647 + 3080 = 128,727

      Based on the number of subscribers after 12 months, there will be approximately 128,727 subscribers after 13 months.

  13. According to economic theory, the supply x of a quantity in a free market increases as the price p increases. Suppose the number x of baseball gloves a retail chain is willing to sell per week at a price of \$p is given by $$x = \;\frac{{100p}}{{0.1p + 1}} \quad\ 30.00 \le p \le 190.00.$$

    1. Find $\frac{{dx}}{{dp}}.$

      $f =100p$

      $f' = 100$

      $g =0.1p + 1$

      $g' = 0.1$

      $\frac{{dx}}{{dp}} = \frac{{100(0.1p + 1) - 0.1(100p)}}{{{{\left( {0.1p + 1} \right)}^2}}}$

      $\frac{{dx}}{{dp}} = \frac{{10p + 100 - 10p}}{{{{\left( {0.1p + 1} \right)}^2}}}$

      $\frac{{dx}}{{dp}} = \frac{{100}}{{{{\left( {0.1p + 1} \right)}^2}}}$

    2. Find the supply and the instantaneous rate of change (IRC) of supply with respect to price when the price is \$40. Write a brief verbal interpretation of these results.

      Supply when $p=\$40\quad\quad\quad x(40) = \frac{{100(40)}}{{0.1(40) + 1}} = \frac{{4000}}{5} = 800\;gloves$

      IRC when $p=\$40\quad\quad\quad \frac{{dx}}{{dp}}(40)=\frac{{100}}{{{{\left({0.1\cdot40+1}\right)}^2}}} = \frac{{100}}{{25}} = 4\;gloves$

      When the price of the baseball gloves is $40, the retail chain can sell 800 gloves per week, and the number of gloves sold is increasing at a rate of 4 gloves per week.

    3. Use the results above to estimate the supply if the price is increased to \$41.

      800+4=804

      If the price increased to $41, 804 gloves would be sold each week.

     

    3.4 Additional Practice

    Find the derivative of each of the following.

  14. $h(x) = \frac{{6x + 5}}{{3x - 8}}$

    $f = 6x + 5$

    $f' = 6$

    $g = 3x - 8$

    $g' = 3$

    $h'(x) = \frac{{6(3x - 8) - 3(6x + 5)}}{{{{\left( {3x - 8} \right)}^2}}}$

    $h'(x) = \frac{{18x - 48 - 18x - 15}}{{{{\left( {3x - 8} \right)}^2}}}$

    $h'(x) = \frac{{ - 63}}{{{{\left( {3x - 8} \right)}^2}}}$

  15. $y = \frac{{{x^3} - 5x}}{{4{x^2}}}$

    $f = {x^3} - 5x$

    $f' = 3{x^2} - 5$

    $g = 4{x^2}$

    $g' = 8x$

    $y' = \frac{{(3{x^2} - 5)(4{x^2}) - 8x({x^3} - 5x)}}{{{{\left( {4{x^2}} \right)}^2}}}$

    $y' = \frac{{12{x^4} - 20{x^2} - 8{x^4} + 40{x^2}}}{{{{\left( {4{x^2}} \right)}^2}}}$

    $y' = \frac{{4{x^4} + 20{x^2}}}{{16{x^4}}}$

    $y' = \frac{{4{x^2}({x^2} + 5)}}{{16{x^4}}}$

    $y' = \frac{{{x^2} + 5}}{{4{x^2}}}$

  16. $r(x) = \frac{2e^x}{x-7}$

    $f = 2e^x$

    $f' = 2e^x$

    $g = x-7$

    $g' = 1$

    $r'(x) = \frac{2e^x(x-7)-2e^x\left(1\right)}{\left(x-7\right)^2}$

    $r'(x) = \frac{2xe^x-14e^x-2e^x}{\left(x-7\right)^2}$

    $r'(x) = \frac{2xe^x-16e^x}{\left(x-7\right)^2}$

  17. $h(x) = \frac{x+7}{-3e^x}$

    $f = x+7$

    $f' = 1$

    $g = -3e^x$

    $g' = -3e^x$

    $h'(x) = \frac{1(-3e^x)-\left(-3e^x\right)(x+7)}{\left(-3e^x\right)^2}$

    $h'(x) = \frac{-3e^x\left[1-(x+7)\right]}{\left(-3e^x\right)^2}$

    $h'(x) = \frac{\left[1-(x+7)\right]}{-3e^x}$

    $h'(x) = \frac{1-x-7}{-3e^x}$

    $h'(x) = \frac{-x-6}{-3e^x}$

    $h'(x) = \frac{x+6}{3e^x}$

  18. $p(x) = \frac{\sqrt x}{2x-4}$

    $f = x^\frac12$

    $f' = \frac12x^{-\frac12}$

    $g = 2x-4$

    $g' = 2$

    $p'(x) = \frac{\displaystyle\frac12x^\frac12\left(2x-4\right)-2\left(x^\frac12\right)}{\left(2x-4\right)^2}$

    $p'(x) = \frac{\displaystyle x^\frac12-2x^\frac{-1}2-2x^\frac12}{\left(2x-4\right)^2}$

    $p'(x) =\frac{\displaystyle-1x^\frac12-2x^\frac{-1}2}{\left(2x-4\right)^2}$

    Multiply all terms by $x^\frac12.$

    $p'(x) = \frac{\displaystyle-x-2}{\sqrt x\left(2x-4\right)^2}$

  19. $r(x) = \frac{\sqrt[3]x}{3x-9}$

    $f = x^\frac13$

    $f' = \frac13x^{-\frac23}$

    $g = 3x-9$

    $g' = 3$

    $r'(x) = \frac{\displaystyle\frac13x^\frac{-2}3\left(3x-9\right)-3(x^\frac13)}{\left(3x-9\right){\displaystyle{}^2}}$

    $r'(x) = \frac{\displaystyle1x^\frac13-3x^\frac{-2}3-3x^\frac13}{\left(3x-9\right){\displaystyle{}^2}}$

    $r'(x) =\frac{\displaystyle-2x^\frac13-3x^\frac{-2}3}{\left(3x-9\right){\displaystyle{}^2}}$

    Multiply all terms by $x^\frac23.$

    $r'(x) =\frac{\displaystyle-2x-3}{\sqrt[3]{x^2}\left(3x-9\right){\displaystyle{}^2}}$

  20. $w(x) = \frac{\ln x}{x^3}$

    $f =\ln x$

    $f' = \frac1x$

    $g = x^3$

    $g' = 3x^2$

    $w'(x) = \frac{\displaystyle\frac1x\left(x^3\right)-3x^2\ln x}{\left(x^3\right)^2}$

    $w'(x) = \frac{x^2-3x^2\ln x}{x^6}$

    $w'(x) =\frac{1-3\ln x}{x^4}$

  21. Determine the slope of the tangent line to the curve $R(x) = \frac{{{x^2} - 2x - 8}}{{{x^2} - 9}}$ at the point where $x = 0$.

    $f = {x^2} - 2x - 8$

    $f' = 2x - 2$

    $g = {x^2} - 9$

    $g' = 2x$

    $R'(x) = \frac{{(2x - 2)({x^2} - 9) - 2x({x^2} - 2x - 8)}}{{{{\left( {{x^2} - 9} \right)}^2}}}$

    $R'(x) = \frac{{2{x^3} - 18x - 2{x^2} + 18 - 2{x^3} + 4{x^2} + 16x}}{{{{\left( {{x^2} - 9} \right)}^2}}}$

    $R'(x) = \frac{{2{x^2} - 2x + 18}}{{{{\left( {{x^2} - 9} \right)}^2}}}$

    ${m_{\tan }}=R'(0) = \frac{{2{{(0)}^2} - 2(0) + 18}}{{{{\left( {{0^2} - 9} \right)}^2}}} = \frac{{18}}{{81}} = \frac{2}{9}$

    ${m_{\tan }} =\frac{2}{9}$

  22. Find the equation of the tangent line to $f(x) = \frac{{{x^2} + 3}}{{6 - x}}$ at $x = 3$.

    $f(3) = \frac{{{3^2} + 3}}{{6 - 3}} = \frac{{9 + 3}}{3} = \frac{{12}}{3} = 4$

    $(3,4)$

    $h = {x^2} + 3$

    $h' = 2x$

    $g = 6 - x$

    $g' = - 1$

    $f'(x) = \frac{{2x(6 - x) + 1({x^2} + 3)}}{{{{\left( {6 - x} \right)}^2}}}$

    $f'(x) = \frac{{12x - 2{x^2} + {x^2} + 3}}{{{{\left( {6 - x} \right)}^2}}}$

    $f'(x) = \frac{{ - 1{x^2} + 12x + 3}}{{{{\left( {6 - x} \right)}^2}}}$

    ${m_{\tan }}= f'(3) = \frac{{ - 1({3^2}) + 12(3) + 3}}{{{{\left( {6 - 3} \right)}^2}}}$

    ${m_{\tan }}= \frac{{ - 9 + 36 + 3}}{{{3^2}}} = \frac{{30}}{9} = \frac{{10}}{3}$

    $y - 4 = \frac{{10}}{3}(x - 3)$

    $y - 4 = \frac{{10}}{3}x - 10$

    $y = \frac{{10}}{3}x - 6$

  23. A music publisher expects that, over the first 24 months after the release of an album, the monthly profit (in thousands of dollars) can be modeled by $P(t) = \frac{{800 + 400t - 20{t^2}}}{{{t^2} + 20}}$

    1. Find the model for the marginal profit.

      $f = 800 + 400t - 20{t^2}$

      $f' = 400 - 40t$

      $g = {t^2} + 20$

      $g' = 2t$

      $P'(t) = \frac{{(400 - 40t)({t^2} + 20) - 2t(800 + 400t - 20{t^2})}}{{{{\left( {{t^2} + 20} \right)}^2}}}$

      $P'(t) = \frac{{400{t^2} + 8000 - 40{t^3} - 800t - 1600t - 800{t^2} + 40{t^3}}}{{{{\left( {{t^2} + 20} \right)}^2}}}$

      $P'(t) = \frac{{ - 400{t^2} - 2400t + 8000}}{{{{\left( {{t^2} + 20} \right)}^2}}}$

    2. Find and interpret the marginal profit 1 month after release.

      $P'(1) = \frac{{ - 400{{(1)}^2} - 2400(1) + 8000}}{{{{\left( {{1^2} + 20} \right)}^2}}}$

      $P'(1) = \frac{{ - 400 - 2400 + 8000}}{{{{\left( {21} \right)}^2}}} = \frac{{5200}}{{441}} = 11.79$

      The profit is increasing at a rate of \$11,790 per month after the 1st month of release.

    3. Find and interpret the marginal profit 6 months after release.

      $P'(6) = \frac{{ - 400{{(6)}^2} - 2400(6) + 8000}}{{{{\left( {{6^2} + 20} \right)}^2}}}$

      $P'(6) = \frac{{ - 14400 - 14400 + 8000}}{{{{56}^2}}} = \frac{{ - 20800}}{{3136}} = - 6.63$

      The profit is decreasing at a rate of \$6630 per month after the 6th month of release.

    4. After how many months will marginal profit begin to decrease?

      $\frac{{ - 400{t^2} - 2400t + 8000}}{{{{\left( {{t^2} + 20} \right)}^2}}} = \frac{0}{1}$

      $- 400{t^2} - 2400t + 8000 = 0$

      $- 400({t^2} + 6t - 20) = 0$

      ${t^2} + 6t - 20 = 0$

      $t = \frac{{ - 6 \pm \sqrt {{6^2} - 4(1)( - 20)} }}{{2(1)}} = \frac{{ - 6 \pm \sqrt {36 + 80} }}{2} = \frac{{ - 6 \pm \sqrt {116} }}{2} = \frac{{ - 6 \pm 10.77}}{2}$

      The zeros of the equation are $t=2.385$ and $t=-8.385.$ Note: $t=-8.385$ is not in the domain.

      The profit begins to decrease 2.385 months after the release of the album.

  24. Comcast has determined a model that predicts the total number of subscribers it will have when it expands to a new geographic region. The total number of subscribers $S$ (in thousands) $t$ months after the expansion is given by $S(t) = \frac{{150t}}{{t + 6}}$

    1. Find $S'(t)$.

      $S'(t) = \frac{{150(t + 6) - 1(150t)}}{{{{\left( {t + 6} \right)}^2}}}$

      $S'(t) = \frac{{150t + 900 - 150t}}{{{{\left( {t + 6} \right)}^2}}}$

      $S'(t) = \frac{{900}}{{{{\left( {t + 6} \right)}^2}}}$

    2. Find $S(15)$ and $S'(15)$and interpret the results.

      $S(15) = \frac{{150(15)}}{{15 + 6}} = 107.14$

      $S'(15) = \frac{{900}}{{{{\left( {15 + 6} \right)}^2}}} = 2.04$

      The total number of subscribers after 15 months is 107,140.The number of subscribers is increasing at a rate of about 2040 per month after the 15th month.

    3. Use the results from part b to estimate the total number of subscribers after 16 months.

      $S(16) \approx 107.14 + 2.04 \approx 109.18$

      $S(16)\approx S(15)+S'(15)$

      At 16 months, the number of subscribers will be approximately 109,180.

  25. The concentration of a particular drug in the bloodstream can be modeled by $C(t) = \frac{{20t}}{{{t^2} + t + 5}}$, where $C(t)$ is measured in milligrams per cubic millimeter and $t$ is time in hours. What change in concentration can be expected between the 5th and 6th hour after the drug is administered?

    $f = 20t$

    $f' = 20$

    $g = {t^2} + t + 5$

    $g' = 2t +1$

    $C'(t) = \frac{{20({t^2} + t + 5) - 20t(2t + 1)}}{{{{\left( {{t^2} + t + 5} \right)}^2}}}$

    $C'(t) = \frac{{20{t^2} + 20t + 100 - 40{t^2} - 20t}}{{{{\left( {{t^2} + t + 5} \right)}^2}}}$

    $C'(t) = \frac{{ - 20{t^2} + 100}}{{{{\left( {{t^2} + t + 5} \right)}^2}}}$

    $C'(5) = \frac{{ - 20{{(5)}^2} + 100}}{{{{\left( {{5^2} + 5 + 5} \right)}^2}}}$

    $C'(5) = - 0.33$

    The concentration of the drug is decreasing by .33 mg/ml$^3$ from the 5th to 6th hours.