MATH 1830 Notes

Unit 2 Applications of Derivatives

2.5 Absolute Extrema

Algorithm for Determining Extreme Values

Suppose that $f(x)$ is a continuous function over a closed interval [a, b].

To find the absolute maximum and minimum values of the function $f(x)$ on [a, b]:

  1. Find $f'(x)$.
  2. Determine the additional points to test in the interval [a, b].

    (that is, find all x values for which $f'(x)=0$ (critical points), $f'(x)$ does not exist (possible cusps, etc.).

  3. Create a table for (x, y) coordinates and list all $x$ values you plan to check: the endpoints $a,$ $b,$ and all critical values, possible cusps, etc.
  4. Find the function values of all the $x$ values in the table.
    1. The largest of these values is the absolute maximum of on the interval [a, b].
    2. The smallest of these is the absolute minimum of on the interval [a, b].

 

2.5 Video

Find the absolute minimum and maximum values of the function, if they exist, over the given interval.

  1. $f(x)={{x}^{2}}-6x-3\quad \quad [-1,5]$

    $ f'(x)=2x-6 $

    Criticals: $f'(x)=0 $

    $ 2x-6=0 $

    $ 2x=6 $

    $ x=3 $

    Calculate $f(x)$ for the interval endpoints: ($x=-1, 5$), and critical values: ($x=3$).

    $x$ $f(x)$
    -1 $ 4$
    3 $ -12 $
    $5$ $ -8 $

    The Absolute Maximum on the interval is: $(-1, 4)$.

    The Absolute Minimum on the interval is: $(3, -12)$.

  2.  

    2.5 Lecture

    Find the absolute minimum and maximum values of the function, if they exist, over the given interval.

  3. $f(x)=2{{x}^{3}}-3{{x}^{2}}-36x+62\quad \quad [-3,4]$

    $ f'(x)=6{{x}^{2}}-6x-36 $

    $ 6{{x}^{2}}-6x-36=0 $

    $ 6\left( {{x}^{2}}-x-6 \right)=0 $

    $ 6(x+2)(x-3)=0 $

    $ x=-2$, and $x=3$

    Calculate $f(x)$ for the interval endpoints: ($x=-3$ and $x= 4$), and critical values: ($x=-2$ and $x=3$).

    $x$ $f(x)$
    -3

    $ 89$

    -2

    $106 $

    3

    $-19 $

    4

    $-2$

    The Absolute Maximum on the interval is: $(-2, 106)$.

    The Absolute Minimum on the interval is: $(3, -19)$.

  4.  

    2.5 Group Work

    Find the absolute minimum and maximum values of the function, if they exist, over the given interval.

  5. $f(x)=x^3-9x^2+24x-23\quad \quad [-2,3]$

    $ f(x)=x^3-9x^2+24x-23 $

    $ f'(x)=3x^2-18x+24 $

    $ f'(x)=3(x-4)(x-2) $

    $ 3(x-4)(x-2)=0 $

    $ x=2\text{ and }x=4 $

    Calculate $f(x)$ for the interval endpoints: ($x=-2$ and $x=3$), and critical value(s): ($x=2$).

    Do not include the critical value $x=4$ because it is not in the interval.

    $x$ $f(x)$
    $-2$

    $-115$

    $2$

    $-3$

    $3$

    $-5$

    The Absolute Maximum on the interval is: $(2, -3)$.

    The Absolute Minimum on the interval is: $(-2, -115)$.

  6. $f(x)=x+\frac{1}{x}\quad \quad [1,20]$

    $ f(x)=x+{{x}^{-1}} $

    $ f'(x)=1+(-1){{x}^{-2}} $

    $ f'(x)=1-\frac{1}{{{x}^{2}}} $

    $ 0=1-\frac{1}{{{x}^{2}}} $

    $ \frac{1}{{{x}^{2}}}=1 $

    $ {{x}^{2}}=1 $

    $ \sqrt{{{x}^{2}}}=1 $

    $ x=1\text{ and }x=-1 $

    Calculate $f(x)$ for the interval endpoints: ($x=1$ and $x=-1$), and critical values: ($x=20$).

    Do not include the critical value $x=-1$ because it is not in interval.

    $x$ $f(x)$
    $1$

    $2$

    $20$

    $20.05$

    The Absolute Maximum on the interval is: $(20, 20.05)$.

    The Absolute Minimum on the interval is: $(1, 2)$.

  7. $f(x)=-3\quad \quad [-2,2]$

    $f'(x)= 0$

    $x$ $f(x)$
    $-2$

    $-3$

    $2$

    $-3$

    There are no maximum or minimum values because this is a constant function.

  8. An employee’s monthly production $M$, in number of units produced, is found to be a function of the number of year of service, $t$. For a certain product, a productivity function is given by: $M(t)=-2{{t}^{2}}+100t+180,\quad 0\le t\le 40$

    Find the maximum productivity and the year in which it is achieved.

    $M'(t)=-4t+100$

    $ -4t+100=0$

    $t=25$

    Calculate $M(t)$ for the interval endpoints: ($t=0, 40$), and critical values: ($t=25$).

    $t$ $M(t)$
    0

    $180$

    25

    $1430$

    40

    $980$

    The maximum monthly productivity is 1430 units per month in year 25 of service.

  9. Norris, Ken. (1999). Optimization Problems. Retrieved from https://www.stf.sk.ca/portal.jsp?Sy3uQUnbK9L2RmSZs02CjV/Lfyjbyjsxsd+sU7CJwaIY=F

     

    2.5 Additional Practice

    Find the absolute minimum and maximum values of the function, if they exist, over the given interval.
  10. $f(x)={{x}^{3}}-3x+6\quad \quad [-2,2]$

    $f'(x)=3{{x}^{2}}-3$

    $ 3{{x}^{2}}-3=0$

    $ {{x}^{2}}=1$

    $ x=\pm 1$

    $x$ $f(x)$
    $-2$ $4$
    $-1$ $8$
    $1$ $4$
    $2$ $8$

    In the interval, the function has an Absolute Minimum at the point: $(-2, 4)$ and $(1, 4).$

    In the interval, the function has an Absolute Maximum at the point: $(-1, 8)$ abd $(2, 8).$

  11. $y={{x}^{4}}-4{{x}^{3}}\quad \quad [-4,6]$

    $y'=4{{x}^{3}}-12{{x}^{2}}$

    $ 4{{x}^{3}}-12{{x}^{2}}=0$

    $ 4{{x}^{2}}(x-3)=0$

    $ 4{{x}^{2}}=0\quad x-3=0$

    $ x=0\quad \quad x=3$

    $x$ $y$
    $-4$ $512$
    $0$ $0$
    $3$ $-27$
    $6$ $432$

    In the interval, the function has an Absolute Minimum at the point: $(3, -27).$

    In the interval, the function has an Absolute Maximum at the point: $(-4, 512).$

  12. Find the absolute minimum and maximum values of the function, if they exist, over the given interval.

    1. $g(x)=\frac13x^3-2x-2\;\;\;\;\left[-2,3\right]$

      $g'(x)=x^2-2$

      $ {{x}^{2}}-2=0 $

      $ x=\sqrt{2},x=-\sqrt{2} $

      $x$ $g(x)$
      $-2$ $-.67$
      $-1.414$ $-.11$
      $1.414$ $-3.89$
      $3$ $1$

      In the interval, the function has an Absolute Minimum at the point: $(1.414,-3.89).$

      In the interval, the function has an Absolute Maximum at the point: $(3, 1).$

    2. Would your answers in part a change if we considered [-2,2] instead?
      $x$ $g(x)$
      $-2$ $-.67$
      $-1.414$ $-.11$
      $1.414$ $-3.89$
      $2$ $-3.33$

      In the interval, the function still has an Absolute Minimum at the point: $(1.414, -3.89).$

      In the interval, the function now has an Absolute Maximum at the point: $(-1.414, -.11).$

    3. What if we changed the interval to $-2\le x\le 1$?
      $x$ $g(x)$
      $-2$ $-.67$
      $-1.414$ $-.11$
      $1$ $-3.67$

      In the interval, the function now has an Absolute Minimum at the point: $(1, -3.67).$

      In the interval, the function now has an Absolute Maximum at the point: $(-1.414, -.11).$

  13. The temperature, T, of person during an illness is given by: $$T(t)=-0.1{{t}^{2}}+1.2t+98.6\ \ \ 0\le t\le 12$$ where T = temperature (°F) at time t, in hours since noon. Find the maximum value of the temperature and when it occurs.

    $ T'(t)=-0.2t+1.2 $

    $ -0.2t+1.2=0 $

    $ -0.2t=-1.2 $

    $ t=6 $

    $t$ $T(t)$
    $0$ $98.6$
    $6$ $102.2$
    $12$ $98.6$

    In the interval, the maximum temperature of 102.2 degrees occurs at 6 pm.