1.2 Finding Limits Algebraically/Infinte Limits/Continuity
1.2A Video
Limits: An Algebraic Approach
Find each indicated quantity, if it exists.
-
$\mathop {\lim }\limits_{x \to - 5} \;2{x^2} + 10x + 7 =$
$2{\left( { - 5} \right)^2} + 10\left( { - 5} \right) + 7 =$
$7$
-
$f\left( x \right) = \;\frac{{3{x^2}\; + 2x - 1}}{{x{\;^2} + 3x + 2}}$
- $\underset{x\rightarrow -3}{lim}f(x)=$
$\underset{x\rightarrow -3}{lim}f(x)=\frac{3{{\left( -3 \right)}^{2}}~+2\left( -3 \right)-1}{\left( -3 \right){{~}^{2}}+3\left( -3 \right)+2}=\frac{20}{2}$
$10$
- $\underset{x\rightarrow -1}{lim}f(x)=$
$\frac{3{{\left( -1 \right)}^{2}}~+2\left( -1 \right)-1}{\left( -1 \right){{~}^{2}}+3\left( -1 \right)+2}=\frac{0}{0}$
Indeterminate form. Factor, Reduce, Try Again.
$\underset{x\rightarrow -1}{lim}f(x)=\underset{x\rightarrow -1}{lim}\frac{\left( 3x-1 \right)\left( x+1 \right)}{\left( x+1 \right)\left( x+2 \right)}=\underset{x\rightarrow -1}{lim}\frac{\left( 3x-1 \right)}{\left( x+2 \right)}=\frac{-4}{1}$
$-4$
- $\mathop {\lim }\limits_{x\; \to \; - 2} f\left( x \right)$
$=\frac{7}{0}\,$ Does not exist
- $\underset{x\rightarrow -3}{lim}f(x)=$
-
$f(x)=\frac{2{{x}^{2}}-7x-15}{{{x}^{2}}+3x-40}$
$f(x)=\frac{(2x+3)(x-5)}{(x+8)(x-5)}$
HA: $y=2$
VA: $x=-8$
Hole: $x=5$
Discontinuous at x=-8 and x=5
Find the indicated quantity, if it exists. -
$\underset{x\rightarrow 0}{lim} \frac{{{x^2}\; - 15x + 50}}{{{{\left( {x - 10} \right)}^2}}}$
$=\frac{50}{100}=\frac12$
-
$\underset{x\rightarrow 5}{lim} \frac{{{x^2}\; - 15x + 50}}{{{{\left( {x - 10} \right)}^2}}}$
$=\frac{0}{25}=0$
-
$\underset{x\rightarrow 10}{lim} \frac{{{x^2}\; - 15x + 50}}{{{{\left( {x - 10} \right)}^2}}}$
$=\frac{0}{0}$
Indeterminate form. Factor, reduce, try again.
$\underset{x\rightarrow 10}{lim}\,\frac{\left( x-5 \right)\left( x-10 \right)}{{{\left( x-10 \right)}^{2}}}=\underset{x\rightarrow 10}{lim}\,\frac{\left( x-5 \right)}{\left( x-10 \right)}=\frac{5}{0}$
The limit does not exist. Vertical asymptote at x=10. On inspection of the graph, the limit as x approaches 10 from the left and the limit as x approaches 10 from the right are not equal.
- $\underset{x\rightarrow4}{lim}\frac{\sqrt x-2}{x-4}$
$\underset{x\rightarrow4}{lim}\frac{\sqrt x-2}{x-4}=\frac00$
Indeterminate form. Technically will factor but hard to do, so graph the function to determine limit.
$\underset{x\rightarrow4}{lim}\frac{\sqrt x-2}{x-4}=0.25$
-
- Find all the vertical asymptotes, horizontal asymptotes, and holes of the function, showing all your work.
-
$f\left( x \right) = \;\frac{{2{x^2}\;\; - \;\;32}}{{{x^2}\; + \;5x\; + \;4}}$
$f\left( x \right) = \;\frac{{2\left( {x + 4} \right)\left( {x - 4} \right)}}{{\left( {x + 4} \right)\left( {x + 1} \right)}}$
Vertical Asymptote: x=-1
Hole: x=-4
Horizontal Asymptote: y=2
-
Where is this function discontinuous?
Discontinuous at x=-4 and x=-1
1.2 Group Work
-
$f\left( x \right) = \;\frac{{2{x^2}\;\; - \;\;32}}{{{x^2}\; + \;5x\; + \;4}}$
-
$\mathop {\lim }\limits_{x \to 4} \;{x^2} - 5x + 1 =$
${4^2} - 5\left( 4 \right) + 1 =$
$- 3$
-
$\mathop {\lim }\limits_{x \to - 5} \;\frac{{x^2\; + 7x + 10}}{{x{\;^2} + 2x -15}}$
$\frac{(-5)^2+7(-5)+10}{(-5)^2+2(-5)-15}=\frac{0}{0}$
Indeterminate form. Factor, Reduce, Try Again.
$\underset{x\rightarrow -5}{lim}f(x)=\underset{x\rightarrow -5}{lim}\frac{\left( x+5 \right)\left( x+2 \right)}{\left( x+5 \right)\left( x-3 \right)}=\underset{x\rightarrow -5}{lim}\frac{\left( x+2 \right)}{\left( x-3 \right)}=\frac{3}{8}$
$\frac{3}{8}$
-
$\mathop {\lim }\limits_{x \to 4} \;\frac{{x^2\; -16}}{{3x{\;^2} -13x +4}}$
$\frac{(4)^2-16}{3(4)^2-13(4)+4}=\frac{0}{0}$
Indeterminate form. Factor, Reduce, Try Again.
$\underset{x\rightarrow 4}{lim}f(x)=\underset{x\rightarrow 4}{lim}\frac{\left( x+4 \right)\left( x-4 \right)}{\left( 3x-1 \right)\left( x-4 \right)}=\underset{x\rightarrow 4}{lim}\frac{\left( x+4 \right)}{\left( 3x-1 \right)}=\frac{8}{11}$
$\frac{8}{11}$
-
$f\left( x \right)\; = \frac{{{x^2}\;\; - \;\;9}}{{{x^2}\;\; - \;\;4}}$
$f\left( x \right) = \;\frac{{\left( {x + 3} \right)\left( {x - 3} \right)}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}$
Vertical Asymptote: x=2 and x=-2
Hole: none
Horizontal Asymptote: y=1
Discontinuous at x=2 and x=-2
-
$f\left( x \right)\; = \frac{{x\;\; + 2}}{{{x^2}\; + \;3}}$
Vertical Asymptote: none
Hole: none
Horizontal Asymptote: y=0
This function is continuous.
-
$f\left( x \right)\; = \frac{{{x^2}\; - 3x - \;10}}{{{x^2}\; - \;4x - 5}}$
$f(x) = \frac{{\left( {x - 5} \right)\left( {x + 2} \right)}}{{\left( {x - 5} \right)\left( {x + 1} \right)}}$
Vertical Asymptote: x=-1
Hole: x=5
Horizontal Asymptote: y=1
Discontinuous at x=-1 and x=5
-
$f(x) = \frac{{{x^2} + 5x - 14}}{{x - 2}}$
Vertical Asymptote: none
Hole: x=2
Horizontal Asymptote: none
Discontinuous at x=2
-
$\underset{x\rightarrow3}{lim}\,\ \frac{{{x}^{2}}+x-12}{x-3}\ = $
$\frac{{{3}^{2}}+3-12}{3-3}=\frac{0}{0}$
Indeterminant form: Factor, reduce, take the limit again
$\underset{x\rightarrow3}{lim}\,\ \frac{(x+4)(x-3)}{x-3}$
$=\underset{x\rightarrow3}{lim}\,\ \left( x+4 \right)$
$=3+4=$
$7$
-
$\underset{x\rightarrow1}{lim}\,\ \frac{{{x}^{2}}+x-12}{x-3}\ = $
$\frac{{{1}^{2}}+1-12}{1-3}=\frac{-10}{-2}=$
$5$
-
$\underset{x\rightarrow10}{lim}\,\ 10 =$
$10$
-
$\underset{x\rightarrow4}{lim}\,\ 3{{x}^{2}}-5x = $
$3{{(4)}^{2}}-5(4)$
$=3(16)-20$
$=48-20=$
$28$
-
$\underset{x\rightarrow0}{lim}\,\ \frac{4x-5{{x}^{2}}}{x-1} = $
$\frac{4(0)-5{{(0)}^{2}}}{0-1}=\frac{0}{-1}=$
$0$
-
$\underset{x\rightarrow1}{lim}\,\ \frac{{{x}^{2}}-1}{x-1} = $
$\frac{{{1}^{2}}-1}{1-1}=\frac{0}{0}$
Indeterminant form: Factor, reduce, take the limit again
$\underset{x\rightarrow1}{lim}\frac{\left(x+1\right)\left(x-1\right)}{x-1}$
$=\,\underset{x\rightarrow1}{lim}\,\left( x+1 \right)$
$=1+1$
$2$
-
$\underset{x\rightarrow0^{+}}{lim}\,\ \frac{\sqrt{2-{{x}^{2}}}}{x} = $
$\frac{\sqrt{2-{{0}^{2}}}}{0}=$
$\frac{\sqrt{2}}{0}$ , which is undefined
-
$\underset{x\rightarrow0^{+}}{lim}\,\ \frac{\sqrt{2-{{x}^{2}}}}{x+1} =$
$\frac{\sqrt{2-{{0}^{2}}}}{0+1}=\frac{\sqrt{2}}{1}=$
$\sqrt{2}$ /li>
-
$\underset{x\rightarrow2}{lim}\,\ {{({{x}^{2}}+4)}^{3}} =$
${{({{2}^{2}}+4)}^{3}}={{(4+4)}^{3}}={{(8)}^{3}}=$
$512$
http://www.whitman.edu/mathematics/california_calculus/calculus.pdf
Find the vertical and horizontal asymptotes and holes, if they exist. Also identify where the function is discontinous.
-
$f(x)=\frac{2x-7}{x-4}\ $
VA: $x=4$
HA: $y=2$
Holes: none
Discontinuous at $x=4$
-
$f(x)=\ \frac{{{x}^{2}}-5}{{{x}^{3}}+{{x}^{2}}+1}\ $
VA: $x=-1.47$
HA: $y=0$
Holes: none
Discontinuous at $x=-1.47$
-
$f(x)=\frac{{{x}^{3}}+6{{x}^{2}}+8x}{{{x}^{2}}-16}\ $
VA: $x=4$
HA: none
Holes: $x=-4$
Discontinuous at $x=4$ and $x=-4$
-
$f(x)=\frac{x-5}{\sqrt{4{{x}^{2}}+8}}\ $
VA: none
HA: $y=0.5$
Holes: none
Continuous
-
$f(x)=\ \frac{{{x}^{2}}-1}{{{x}^{2}}-x-2}$.
VA: $x=2$
HA: $y=1$
Holes: $x=-1$
Discontinuous at $x=2$ and $x=-1$
-
$\underset{x\rightarrow-4^{-}}{lim}\,f(x)=$ $\infty $
-
$\underset{x\rightarrow-4^{+}}{lim}\,f(x)=$ $-\infty $
-
$\underset{x\rightarrow-4}{lim}\,f(x)=$ Does Not Exist
-
$f(-4)=$ undefined
-
$\underset{x\rightarrow2^{-}}{lim}\,f(x)=$ $-3$
-
$\underset{x\rightarrow2^{+}}{lim}\,f(x)=$ $\infty $
-
$\underset{x\rightarrow2}{lim}\,f(x)=$ Does Not Exist
-
$f(2)=$ $-3$
Find the limit.
-
$\underset{x\rightarrow1}{lim}\,\frac{10x}{x-1}=$
$\frac{10(1)}{1-1}=\frac{10}{0}$
Does Not Exist
-
$\underset{x\rightarrow-12}{lim}\,\frac{{{x}^{2}}+11x-12}{x+12}=$
$\underset{x\rightarrow-12}{lim}\,\frac{(x+12)(x-1)}{(x+12)}=\underset{x\rightarrow-12}{lim}\,(x-1)=$
$-13$
Find the vertical and horizontal asymptotes and holes, if they exist.
-
$f(x)=\frac{9x}{x+7}$
VA: $x=-7$
HA: $y=9$
Holes: none
-
$f(x)=9{{x}^{8}}+7{{x}^{6}}+21$
VA: none
HA: none
Holes: none
-
$f(x)=\frac{10{{x}^{2}}+49}{{{x}^{2}}-49}$
VA: $x=7$ and $x=-7$
HA: $y=10$
Holes: none
-
$f(x)=\frac{6x+7}{7{{x}^{2}}+4}$
VA: none
HA: $y=0$
Holes: none
1.2B Video
Find the horizontal asymptotes and where the function is discontinuous.1.2 Lecture
Find all the vertical asymptotes, horizontal asymptotes, and holes of the function. Also identify where the function is discontinous.
1.2 Additional Practice
Compute the limits. If the limit does not exist, explain why.
Extra Practice for Limits and Asymptotes
Find the limits.