Limits: A Graphical Approach
$f(x)= \begin{cases} -x+1 & x \lt 1 \\ 3 & 1\leq x\lt 2 \\ -\left(x-3\right)^2+4 & 2 \lt x \lt 4\\ -1 & x\geq 4\\ \end{cases} $
Use the piecewise function to answer the questions below.
Evaluate the limits graphically. If the limit does not exist, explain why.
$\mathop {\lim }\limits_{x\; \to {0^ - }} f\left( x \right) =$ $1$
$\mathop {\lim }\limits_{x\; \to {0^ + }} f\left( x \right) =$ $1$
$\mathop {\lim }\limits_{x\; \to 0} f\left( x \right) =$ $1$
$f\left( 0 \right) = $ $1$
$\mathop {\lim }\limits_{x\; \to {1^ - }} f\left( x \right) =$ $0$
$\mathop {\lim }\limits_{x\; \to {1^ + }} f\left( x \right) =$ $3$
$\mathop {\lim }\limits_{x\; \to 1} f\left( x \right)=$ Does not exist
The limits from the left and right are not equal, so the limit does not exist.
$f\left( 1 \right) =$ $3$
$\mathop {\lim }\limits_{x\; \to {2^ - }} f\left( x \right) =$ $3$
$\mathop {\lim }\limits_{x\; \to {2^ + }} f\left( x \right) =$ $3$
$\mathop {\lim }\limits_{x\; \to 2} f\left( x \right) =$ $3$
$f\left( 2 \right) =$ undefined
Limits: A Graphical Approach
$f(x)= \begin{cases} -x+1 & x \lt 1 \\ 3 & 1\leq x\lt 2 \\ -\left(x-3\right)^2+4 & 2 \lt x \lt 4\\ -1 & x\geq 4\\ \end{cases} $
Use the piecewise function to answer the questions below.
Evaluate the limits graphically. If the limit does not exist, explain why.
$\mathop {\lim }\limits_{x\; \to - 1} f\left( x \right) =$ $2$
$\mathop {\lim }\limits_{x\; \to 4} f\left( x \right) =$ Does not exist
The limits from the left and right are not equal, so the limit does not exist.
$\mathop {\lim }\limits_{x\; \to 2} f\left( x \right) =$ $3$
$\mathop {\lim }\limits_{x\; \to 3} f\left( x \right) =$ $4$
$\mathop {\lim }\limits_{x\; \to - 2} f\left( x \right) =$ $3$
$\underset{x\rightarrow-2}{lim}f(x)=$ Does Not Exist. There are different limits from the left and right.
$\underset{x\rightarrow-3}{lim}f(x)=$ $6$
$\underset{x\rightarrow0^{-}}{lim}f(x)=$ $-2$
$\underset{x\rightarrow0^{+}}{lim}f(x) =$ $-1$
$\underset{x\rightarrow0}{lim}f(x) =$ Does Not Exist. There are different limits from the left and right.
$f(0) =$ $-1.5$
$\underset{x\rightarrow2^{-}}{lim}f(x) =$ $7$
$\underset{x\rightarrow2^{+}}{lim}f(x) =$ $0$
$\underset{x\rightarrow2}{lim}f(x) = $ Does Not Exist. There are different limits from the left and right.
$f(2) = $ $7$
Problems from https://www.whitman.edu/mathematics/california_calculus/calculus.pdf
Box Office Receipts
The total worldwide box-office receipts for a long running indie film are approximated by the function $$T(x) = \frac{{120{x^2}}}{{{x^2} + 4}}$$ where T(x) is measured in millions of dollars and x is the number of months since the movie’s release. What are the total box-office receipts after:
$T\left( 1 \right) = \frac{{120{{\left( 1 \right)}^2}}}{{{1^2} + 4}} = 24$
The total box-office receipts after 1 month are \$24 million.
$T\left( 2 \right) = \frac{{120{{\left( 2 \right)}^2}}}{{{2^2} + 4}} = 60$
The total box-office receipts after 2 months are \$60 million.
$T\left( 3 \right) = \frac{{120{{\left( 3 \right)}^2}}}{{{3^2} + 4}} = 83$
The total box-office receipts after 3 months are \$83 million.
$T\left( {100} \right) = \frac{{120{{\left( {100} \right)}^2}}}{{{{100}^2} + 4}} = 119.95$
The total box-office receipts after 100 months are \$119.95 million.
In the long run, the movie will gross approximately \$120 million.